
 

 

Introduction 
Individual student records within educational datasets maintained by MEDC are labelled with a unique identifier, 
generated by the State of Michigan, which allows researchers looking to perform analysis across multiple datasets 
to be fairly certain which records correspond to the same individual. However, this limits the scope of any analysis 
to these internal datasets and the variables they contain. In an instance where a researcher has access to an 
external dataset, they would be unable to investigate any relations between that dataset and MEDC’s data. 

In addition to educational research datasets, MEDC also maintains a dataset containing the personally identifiable 
information (PII) of a large proportion of Michigan’s K-12 student population, including full names, dates of birth, 
racial/ethnic status, and addresses, each of which is associated with the state’s unique identifier. With this dataset, 
MEDC has developed a probabilistic matching model that allows it to match MEDC data with external data in cases 
where the external data each dataset contains at least some personally identifiable information in common.  

The objective of this document is to provide a mid- to high-level overview of the process by which MEDC performs 
a probabilistic match between any incoming dataset and the PII dataset maintained in house. We provide a broad 
overview of some of the major concepts relevant to record linkage, including data cleaning, blocking, performing 
field and record level comparisons, and evaluation metrics and techniques. For more information, please find a list 
of references that go into some of these topics at far greater detail at the end of this document. 

 “Truth” Data 
One of the main difficulties with regard to record linkage in general is obtaining a reliable and accurate “truth” 
dataset. Without having some idea of which records ought to be linked to which, it is impossible to determine just 
how well any particular method is performing or to identify areas in which a particular approach is struggling. To 
that end, projects which are not already provided with a labeled subset of data will often opt for hand curated 
truth sets, in which a selection of likely record pairs is annotated by hand, indicating which pairs of records humans 
are likely to consider matching.1 This is a time intensive approach to the problem, which is somewhat alleviated 
these days with projects like Amazon’s Mechanical Turk, but is one method of arriving at a reliable “truth” on 
which to base a project. 

Our data, however, is of a sensitive nature which prevents us from looking outside of MEDC for any large scale 
labelling, and so we were required to look at other methods for arriving at a “truth”. We eventually settled on 
creating two datasets with which to measure our approach: 

 A small subset of data (2,000 pairs), taken from the PII dataset and an in-house research project dataset 
were hand labeled by staff. Each pair was labelled as either match/no match by three annotators, with 
disagreeing annotation decided by majority (<1% of pairs). 

 A synthetic dataset was created programmatically via a python script. The script takes a dataset as input 
and randomly introduces errors into records. The rate at which errors appear and the proportions of 
errors are tunable via a collection of rules and probabilities; this allows us to quickly generate large 
simulated matches, labeled not only with the absolute truth, but also with an indication of what 
modifications were made to a given record. 

Being driven by parameters, the synthetic data set is likely not entirely representative of the kind of datasets we 
might see for a match – we are assuring that certain types of errors will occur within a certain percentage of the 
records. By the nature of the project, we cannot know beforehand how common particular errors are before 
beginning a match, and at best, we can have little more than an expectation for how much intersection there 

 
1 It is also important to note that the “truth” data we deal with here is not an objective truth, as often exists in traditional machine learning. The 
labeled pairs represent a human’s opinion on a pair of data points, and it is entirely possible that they are mistaken – two individuals with the 
same name born on the same day is rare, but not impossible.  



 

 

might be between two sets of data. A synthetic set allows us to experiment with different settings; for example, 
we can contrast the performance of one model when 99% of the data points should have a true match as opposed 
to 10% and modify our approach to address both.  

The hope behind the synthetic data is two-fold. Firs, we hoped that by testing on synthetic datasets, we can 
identify what kinds of perturbations are most effective at forcing an error for a given model and adjust our 
approach accordingly. Second, we wanted to ensure that our approaches were feasible at the extreme end of the 
scale of the data we expected to receive. Since we were unable to obtain enough curated labels to test at larger 
sizes, the synthetic sets were used to check the performance of our approach on very large matches. 

Process 
In order to perform a match, MEDC requires an incoming dataset to contain at the minimum a unique identifier 
per record, a last name field, and a date of birth field2. Any additional information which can be provided by a 
researcher regarding their dataset (e.g. matches should only occur in a given geographical area or age range) will 
also help reduce the incidence of false positives in matching results. 

Datasets submitted to MEDC for matching are all subject to an identical cleaning process. This process is also 
applied to MEDC’s internal PII dataset in order to both improve consistency between datasets and identify/remove 
erroneous data points. 

1. Records are de-duplicated on the unique identifier. 
2. String Fields (first/last name, street address, city, state, zip code): 

1. All strings are converted to uppercase and trimmed of leading and trailing whitespace. 
2. All characters not A-Z, 0-9, spaces, single apostrophes, or hyphens are removed. 
3. All strings which match any of a list of common missing value tokens (e.g. “UNK” or “NA”) are 

removed. 
3. Date Fields (date of birth) 

1. The date format (e.g. D/M/Y, YMD, etc.) is inferred based on a random sample of 1000 records. 
2. The field is parsed according to the estimated format, with all invalid dates3 removed. 

4. Records missing either a last name or a date of birth are noted and removed from matching, as these 
fields are required for our process. 

Some summary statistics about the incoming dataset are also generated at the same time that records are being 
cleaned: 

 How many records will be matched 
 How many records are being matched against 
 For each matching field 

o What percent of values are unique 
o What percent of values are missing 

 How many records appear to have 
o Duplicates with the same ID 
o Unusual characters that would be removed by the validation process 

 
2 Last name and date of birth represent the minimum amount of data with which a match can be performed; additional information will 
improve the quality of the match. 
3 “Invalid” dates would be those dates which either do not exist in the calendar (e.g. February 30th or 14/06/2001), are far too old (likely 
placeholders, like 1/1/1900), or are in the future. 



 

 

Blocking 
Since the goal of matching is to find the matching record from one dataset in another, an intuitive approach might 
be to iterate over each incoming record and try to find the corresponding record in the other dataset. Although 
this method is reasonable in small datasets, it scales poorly as the size of each dataset increases:

Example 1: Two Small Datasets 

 50 records to be matched 
 100 records to match against 
 Total comparisons: 5,000 
 Evaluation time at 10,000 comparisons/sec: 

0.5 seconds 

Example 2: Two Large Datasets 

 1 million records to be matched 
 3 million records to match against 
 Total comparisons: 3 trillion 
 Evaluation time at 10,000 comparisons/sec: 

~9 ½ years 

Clearly, some form of efficiency is needed in order to reduce the computational time needed to perform a large 
match. A common solution is to implement various “blocking” strategies, in which records with similar 
characteristics are identified in both datasets such 
that we are maximally sure that, for a given record, its 
corresponding matching record from the opposite 
dataset is present in the same block. The matching 
process then only needs to operate within each block, 
rather than performing a pairwise set of comparisons 
between datasets.  

Blocking is highly effective at reducing the number of 
comparisons made. For example, a very simple 
blocking method – by gender – applied to the large 
dataset example from above (assuming an equal 
distribution of gender in each dataset) would now 
look like this: 

Example 3: Large Dataset with blocking by 
Gender 

 1 million records to be matched 
 3 million records to match against 
 Blocks: 

o Female Block: 500k records 
matched against 1.5 million records 

o Male Block: 500k records matched 
against 1.5 million records 

 Total comparisons: 1.5 trillion 
 Evaluation time at 10,000 comparisons/sec: 

~ 4 ¾ years 

This blocking strategy in the third example might be visualized as the middle image of Figure 1 – here we no longer 
have to match 50% of the records against each other, only the shaded area are included in the evaluation. More 
complex blocking methods might look like the bottom image, in which significantly more of the records are never 
directly compared. More restrictive and complex blocking mechanisms can be introduced for large datasets that 
further reduce the computational time until we reach fairly modest run times for even the largest datasets. The 
tradeoff with blocking, however, is that we enforce a certain unknown proportion of false negative matches. False 
negative matches are matches which a perfect record matching model would have made had it seen both records, 
but because those records were placed into separate blocks they were never directly compared (in example 3, a 

FIGURE 1 - VISUALIZING VARIOUS BLOCKING METHODS 



 

 

record which should be matched, but that contained a different gender in each dataset). We can alleviate this 
drawback by including multiple blocking schemes so that two records that one scheme  might  place into separate 
blocks  could still be compared if they fell into the same block in another scheme.  

Blocking methods can be evaluated by three metrics: 

 Reduction Ratio: How efficient is this blocking method at reducing the number of comparisons? 
 Pair Completeness: How often are matching record pairs put into the same block? 
 Pair Quality: What proportion of pairwise comparisons within a block will be performed on a matching 

record pair? 

Blocking has the additional benefit of being an inherently parallelizable problem. Since no block ever relies on the 
result of any other block, we can easily scale our solution to the number of available processing cores – sending 
each block out for calculation and appending the result as it completes. This allows us to complete even very large 
record matches in a few hours.   

MEDC’s matching process contains two blocking schemes: 

 Blocking by Exact Date of Birth 
 Blocking by the Phonetic Encoding of Last Name 

o The Soundex4 of the full last name is always taken as a block 
 If the last name contains any hyphens or spaces, each part is looked at in turn5 
 If the name segment is longer than three characters6, the record also belongs to the 

block designated by that Soundex 
 

Figure 2 contains some examples of this blocking 
method applied to two pairs of invented records. In 
the first pair of rows, we can see that these two 
records will be compared twice – once in the 
“12/18/1994” block as well as once in the “J520” 
block. In the second pair, we have two records with 
slightly different birthdates, so they will end up in 
different birthday blocks. They will, however, be 
compared against one another in the “R263” block. 

Based on internal experimentation on our “truth” datasets, these two methods were chosen for being both highly 
likely to contain true matches as well as vastly reducing the number of comparisons required of the matching 
model. Enforced false negatives will occur only when a true match contains both an incorrect birth date and a last 
name significantly different enough to be assigned a different Soundex.7 

Matching 
Within a probabilistic matching model, there are three hurdles that need to be overcome: 

 
4 Soundex is a phonetic algorithm that attempts to encode a name such that homophones like “Smith” and “Smyth” are given the same code. 
The code consists of the first letter of the name followed by three digits which represent the consonant sounds after the first letter. An 
overview of the encoding rules is available at https://www.archives.gov/research/census/soundex.html. 
5 Since Soundex appends zeros to a code if the name is short, we can often end up with compound last names receiving a different Soundex 
code than either last name on its own – e.g. “Smith” would be encoded as “S530”, but “Smith-Jones” would be encoded as “S532”, with the last 
“2” coming from the “J” in “Jones”. By encoding each last name segment as well as the overall name, we can ensure that “Smith-Jones” will end 
up in a block with all of the other “Smith-Jones” records as well as “Smith” and “Jones” records.  
6 A minimum length was chosen to avoid creating very large blocks for names which contain name affixes like “de la”, “al” and “von”. 
7 We are currently using “Standard Blocking” in our approach, but there are many alternative methods – see (Baxter, Christen and Churches 
2003) and (Steorts, et al. 2014) for a description of more advanced methods. 

FIGURE 2 - EXAMPLE BLOCKS GENERATED FROM LAST NAME / 

DATE OF BIRTH 

Last Name DOB Block Memberships 

Smith-Jones 12/18/1994 
12/18/1994, S532, 

S530, J520 
Jones 12/18/1994 12/18/1994, J520 

Richards 5/24/1993 5/26/1993, R263 
Richard 5/29/1993 5/29/1993, R263 



 

 

 How to handle the number of comparisons necessary to find all potential matches 
 How to calculate a similarity “score” for a given pair of records 
 How to calculate a similarity “score” for a field within a pair of records 

The first hurdle is addressed with blocking – we will essentially turn the one giant matching problem into a series 
of much more reasonably sized matching problems, aware that we may be enforcing a certain number of missed 
matches in exchange for shorter calculation time. The second two hurdles are now much more surmountable: 
within a given pair of blocks. We now need to identify a way of calculating how similar each pair of records are, 
and in order to do this, we need to be able to calculate how similar two fields are between a pair of records. 

Field Matching 

For some very simple fields, like gender, we can use a simple Boolean match – that is, if the genders of a pair of 
records are the same, then they score a 1. If they are different, they score a 0. What we’re really interested in 
regarding our model, however, is how to incorporate a level of “fuzzy” matching that will allow us to pick up on 
minor spelling variations between words or names.  

Our process uses a string metric called “Jaro-Winkler distance” (Winkler 
1990) to quantify how similar two strings are on a scale of 0-1. The Jaro-
Winkler algorithm takes into account the number of characters that 
match in each sequence, putting extra weight on a proportion of the 
first characters8 and lessening the negative impact of transposed 
characters. For our purposes, string pairs are considered “matching” if 
their Jaro-Winkler distance is greater than 0.92, “similar” if their 
distance is between 0.92 and 0.88, and “no match” if below 0.88. As 
demonstrated by Figure 3, identical or nearly identical names are given a 
very high score, whereas dissimilar names fall below the match 
threshold. 

We can also implement a level of fuzziness in numerical fields – with Year of Birth, for instance, we consider 
identical years “matching”, while records within +/- one year “similar”9. 

Record Matching 

The matching model MEDC uses is an unsupervised version of the Fellegi-Sunter probabilistic model (Fellegi and 
Sunter 1969) as implemented by the open source fastLink R library10 and tailored to our particular use case. The 
Fellegi-Sunter model estimates the probability of a given match given a pattern of agreement and disagreement 
between the features of two records.  

Traditionally, the model requires a certain amount of labelled data in the form of a “ground truth” and estimates 
two probabilities for each field: 

m: “How likely is it that in a given record pair these two fields will match when they are a true match?” 

u: “How likely is it that in a given record pair these two fields will match entirely by chance?” 

As an example, let’s take two datasets with two fields – gender and last name. Within our labelled data, we can see 
that when two records are labelled as a match, there is agreement within the gender field 90% of the time and 

 
8 In data which is manually entered into an electronic system, entry errors are more likely to occur after the first few letters. This weighting will 
ensure that “Johnson” and “Jonson” – two different names - are not considered as similar as “Johnson” and “Johnosn” – the result of a 
typographical error. 
9 Date fields offer an unusual challenge in that, though they could be considered Boolean matches, we might allow for specific rules that 
provide for partial matches where common clerical mistakes occur – for example, data entry off of a handwritten document mistaking a “4” for 
a “9”. This is not yet implemented in our model. 
10 https://github.com/kosukeimai/fastLink 

Name 1 Name 2 
Jaro-Winkler 

Distance 
Roberts Roberts 1.000 

Jacobson Jacobosn 0.975 
Smith Smyth 0.893 
Jones Johnson 0.832 

Richards Christoph 0.593 
FIGURE 3 - JARO-WINKLER DISTANCE FOR 

EXAMPLE NAME PAIRS 



 

 

within the last name field 95% of the time. We can also see that in pairs that are not labelled as matches, there is 
agreement by chance in the gender field 50% of the time, and in the last name field .01% of the time. These are 
our m and u values from which we can calculate a weight to give to the probability of either a match or a non-
match.  

 Pair is a Match Pair is Not a Match 

Gender fields match m = 0.9 u = 0.5 
Last Name fields match m = 0.95 u = 0.01 

What this tells the model is that a gender that matches is an indicator that this pair might match, but a non-
matching gender field should not make us at all certain that this is not a match, since that happens regularly. 
Identical last names, on the other hand, are a pretty strong indicator that the pair is a match, since matching pairs 
nearly always share a last name. It also is a strong indicator in favor of making non-matches, since it is fairly rare 
that two last names will agree by chance. Taken together, we would be more confident in making a match when 
both gender and last name agree than if either did not, and although we might still be willing to consider a match 
where the last name matched and the gender didn’t, we would be far less confident in a pair where gender 
matched and last name didn’t.  

What we don’t have in our use case, and what this model expects, is a set of labelled data. A researcher who 
requests a match is only providing a collection of PII, and we have no way of knowing in advance how much 
variation in spelling/birthdates/address exists and thus no way of directly assigning values to m and u for each 
field. We could obtain this with some human effort – with each incoming match, we might identify approximately 
a thousand most likely pairs and calculate the m/u parameters for the Fellegi-Sunter model based on those labels. 
That would require a significant expenditure of expensive human effort, so the fastLink package attempts to 
estimate these parameters with the Expectation Maximization (EM) algorithm in order to best approximate what 
m and u should be for each field given the records.  

Broadly, the EM algorithm in this context looks at how often each combination of a given pattern of 
Match/Partial/Non-Match appears between all records and iteratively tries to estimate how to best assign m/u 
parameters for each field so that the model will properly discriminate between matches/non-matches.11 In early 
experimentation, we determined that this methodology appeared to perform at least on par with other methods 
and in some cases, even outperformed models that required human input. 

Post-Analysis 
As part of the output of the matching model, each pair of predicted matches has associated with it a posterior 
probability – a value between 0 and 1 that indicates how “sure” the model is that the pair of records represents a 
true match. In cases where all fields are identical, we would expect this probability to be almost 1. Conversely, we 
would also expect there to be a subset of records in the incoming dataset that do not exist in our dataset, and we 
would expect these probabilities to be near 0, since no close match should exist. However there will also exist a 
certain number of records for which the probability falls somewhere between the extremes, where the model 
found a “maybe” match. While with small matches it might be possible to hand label all of these “maybe” matches, 
this becomes far too time expensive at larger scales, and so we have to identify a threshold at which we are willing 
to accept a match. 

It may be tempting to set the threshold very high – 0.99 for instance – and only retain those matches about which 
the model was very certain in order to minimize the incidence of incorrect matches. This would likely result in 
discarding a large number of possibly good matches, but we would be highly confident in the matches we did have. 
On the other hand, we might be willing to set the threshold very low – say 0.40 – with the understanding that we 

 
11 See (Abramitzky, Mill and Perez 2018) for an in depth explanation of the method 



 

 

are willing to take the risk of including a number of incorrect matches in exchange for more matches overall. In 
either case, we are not truly able to quantify the risk we would be taking.  

Metrics 

What we can do to qualify the risk is to select a random sample of matches that were returned by the model and 
label this subset in expectation that it will be representative enough of the overall match to make reasonable 
estimations of how many errors exist at a given threshold.12 With our labeled subset of data, we can identify the 
different types of “good” and “bad” matches that exist in our output: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎 𝑚𝑎𝑡𝑐ℎ, 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑜𝑟𝑠 𝑎𝑔𝑟𝑒𝑒 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎 𝑚𝑎𝑡𝑐ℎ, 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑜𝑟𝑠 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒 (𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑜𝑒𝑠𝑛 𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎 𝑚𝑎𝑡𝑐ℎ ℎ𝑢𝑚𝑎𝑛𝑠 𝑠𝑎𝑦 𝑠ℎ𝑜𝑢𝑙𝑑 𝑒𝑥𝑖𝑠𝑡 (𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 =  𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎 𝑚𝑎𝑡𝑐ℎ 𝑎𝑛𝑑 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑑𝑖𝑑 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑜𝑟𝑠 

By counting  the total number of each of these types of matches that we see in our labelled data, we can calculate 
two further statistics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
 

  
= 𝑂𝑓 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑤ℎ𝑎𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑤𝑒𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡?  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
 

  
= 𝑂𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑡ℎ𝑎𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑒𝑥𝑖𝑠𝑡, ℎ𝑜𝑤 𝑚𝑎𝑛𝑦 𝑤𝑒𝑟𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑?   

With these in hand, we can now look at our labeled 
data and see how the match would score at various 
thresholds. As we change the threshold, we are no 
longer claiming the model would have predicted that 
records below a given probability would be a match, 
so we are removing false positives at the cost of 
introducing false negatives. In general, we expect that 
at a threshold of 0, at which we accept every match 
regardless of how certain the model is, recall will be very high and precision is very low. As we increase the 
threshold, recall will began to drop, and precision will increase as we eliminate “maybe” matches, until at a point 
the only matches that remain are those of which the model was almost certain.  

What we are still missing here is a metric that helps us to identify where we should be setting the threshold for a 
given match. Take for example a hypothetical match that attempted to match 50 records to 200 records. We 
would perform 10,000 total comparisons, of which, at best, 50 would be true positives and 9,950 true negatives. If 
we assume that some of the matches were incorrect, as in Figure 4, then accuracy (# correct out of total 
predictions) gives us an unclear view of how well the match performed because, as we are performing a pairwise 
comparison, True Negatives dominate any calculation. Matching more than 1/5 of all of the records incorrectly is 
not an ideal outcome, but the accuracy metric might suggest that we had actually performed well. What we need 
instead is a metric that will ignore the false negatives in our data: 

𝐹  𝑠𝑐𝑜𝑟𝑒 = 2 ×  
 ×

= 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑧𝑒𝑑 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑅𝑒𝑐𝑎𝑙𝑙  

F1 score is a common metric applied in binary prediction tasks to evaluate the performance of a classifier. Here, we 
are also making a binary classification – is a record a match or not? We can see that in our hypothetical match 
from before, the F1 score is much lower than the accuracy and better reflects the quality of the match. We still 
managed to correctly match 35 of our records, but the influence of the 15 incorrect matches is still visible in the  

 
12 Through experimentation, we have determined that at minimum, 200 labelled examples are needed to give a reasonable estimate. 

  Actual  

  Match No Match Accuracy 

Predicted 
Match 35 10 

0.999 
No Match 5 9940 

FIGURE 4 - ACCURACY ON A HYPOTHETICAL MATCH 



 

 

score. 13 

By using an F1 score, we are providing equal weight to Precision and Recall, by which we seek to minimize the 
overall error rate of the output by locating 
the threshold at which F1 is at its highest. 
Although this will result in a less 
conservative overall matching result, some 
literature suggests that being too restrictive 
within matching criteria is detrimental to 
the result of a study that incorporates the 
match (Tahmont, et al. 2019).14 

Setting a Threshold 

Applying this to a match, we can calculate these 
metrics at a variety of thresholds and identify the 
point at which the F1 score was at its highest point. 
Figure 6 is a plot of these metrics from an early 
match performed by MEDC. We can see the 
precision of the match increasing as we raise the 
threshold while recall remains mostly constant. 
However once the threshold starts to exceed 0.70, 
we begin to eliminate from the match some record 
pairs that were labelled as “correct”. Once we hit a 
threshold value of 0.90, the decrease in recall is 
enough to start balancing out the increase in 
precision and the overall F1 descends from this 
point on. For this particular match, a threshold of 
0.88 was identified. 

Deliverables 
Upon completion of the entire matching process, we are able to provide the researcher with 

 Summary Statistics collected before the match about the incoming dataset 
 A csv with: 

o The unique Identifier provided by the researcher in their dataset 
o A unique Identifier from our dataset that was determined to be the best match 
o A value indicating how confident our model is that the records are a match 
o A label indicating anything unusual about the record pair (e.g. it failed validation, was manually 

labelled, etc.) 
 A plot of the precision/recall/F1 score by threshold indicating why that threshold was selected 

 

 
13 An alternative metric might be FBeta, which is an F1 score in which the relative importance of Precision and Recall is determined by a value 
Beta – a more conservative metric might be to use a beta of 0.5, indicating that we consider Precision twice as important as recall. 
14 For example, a match with 2% false positives and 2% false negatives has an overall lower error rate than if a more restrictive criteria were 
used, decreasing the false positive rate to 1% at the cost of 5% false negatives. 

  Actual   

  Match No Match Accuracy F1 Score 

Predicted 
Match 35 10 

0.999 0.824 
No Match 5 9940 

FIGURE 5 - F1 SCORE ON A HYPOTHETICAL MATCH 

FIGURE 6 - PRECISION (ORANGE), F1 SCORE (BLUE) AND 
RECALL (GREEN) OF A SAMPLE MATCH BY POSTERIOR 

THRESHOLD 
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