
Probabilistic Matching at the
Michigan Education Data Center

Page 1

Introduction
Individual student records within educational datasets maintained by the Michigan
Education Data Center (MEDC) are labelled with a unique identifier, generated by
the State of Michigan, which allows researchers looking to perform analysis across
multiple datasets to be fairly certain which records correspond to the same individual.
However, this limits the scope of any analysis to these internal datasets and the
variables they contain. In an instance where a researcher has access to an external
dataset, they would be unable to investigate any relations between that dataset and
MEDC’s data.

In addition to educational research datasets, MEDC also maintains a dataset
containing the personally identifiable information (PII) of a large proportion of
Michigan’s K-12 student, post-secondary student and K12 staff populations,
including full names, dates of birth, racial/ethnic status, and addresses, each of which
is associated with the state’s unique identifier. With these datasets, MEDC has
developed a probabilistic matching model that allows it to match MEDC data with
external data in cases where the external dataset contains at least some personally
identifiable information in common.

The objective of this document is to provide a mid- to high-level overview of the
process by which MEDC performs a probabilistic match between any incoming
dataset and the PII datasets maintained in house. We provide a broad overview
of some of the major concepts relevant to record linkage, including data cleaning,
blocking, performing field and record level comparisons, and evaluation metrics and
techniques. For more information, please find a list of references that go into some of
these topics at far greater detail at the end of this document.

Page 2

"Truth” Data
One of the main difficulties with regard to record linkage is obtaining a reliable and
accurate “truth” dataset. Without having some idea of which records ought to be
linked to which, it is impossible to determine just how well any particular method is
performing or to identify areas in which a particular approach is struggling. To that
end, projects which are not already provided with a labeled subset of data will often
opt for hand curated truth sets, in which a selection of likely record pairs is annotated
by hand, indicating which pairs of records humans are likely to consider matching.1
This is a time intensive approach to the problem, which is somewhat alleviated these
days with projects like Amazon’s Mechanical Turk, but is one method of arriving at a
reliable “truth” on which to base a project.

Our data, however, is of a sensitive nature which prevents us from looking outside of
MEDC for any large scale labelling, and so we were required to look at other methods
for arriving at a “truth”. We eventually settled on creating two datasets with which to
measure our approach:

•	 A small subset of data (2,000 pairs), taken from the PII dataset and an in-house
research project dataset were hand labeled by staff. Each pair was labelled as
either match/no match by three annotators, with disagreeing annotation decided
by majority (<1% of pairs).

•	 A synthetic dataset was created programmatically via a Python script. The script
takes a dataset as input and randomly introduces errors into records. The rate
at which errors appear and the proportions of errors are tunable via a collection
of rules and probabilities; this allows us to quickly generate large simulated
matches, labeled not only with the absolute truth, but also with an indication of
what modifications were made to a given record.

Page 3

Being driven by parameters, the synthetic data set is likely not entirely representative
of the kind of datasets we might see for a match – we are assuring that certain types
of errors will occur within a certain percentage of the records. By the nature of the
project, we cannot know beforehand how common particular errors are before
beginning a match, and at best, we can have little more than an expectation for how
much intersection there might be between two sets of data. A synthetic set allows us
to experiment with different settings. For example, we can contrast the performance
of one model when 99% of the data points should have a true match as opposed to
10% and modify our approach to address both.

The hope behind the synthetic data is two-fold. First, we hoped that by testing on
synthetic datasets, we can identify what kinds of perturbations are most effective at
forcing an error for a given model and adjust our approach accordingly. Second, we
wanted to ensure that our approaches were feasible at the extreme end of the scale
of the data we expected to receive. Since we were unable to obtain enough curated
labels to test at larger sizes, the synthetic sets were used to check the performance of
our approach on very large matches.

Process
In order to perform a match, MEDC requires an incoming dataset to contain at the
minimum a unique identifier per record, a last name field, and a date of birth field.2

Any additional information which can be provided by a researcher regarding their
dataset (e.g. matches should only occur in a given geographical area or age range)
will also help reduce the incidence of false positives in matching results.

Datasets submitted to MEDC for matching are all subject to an identical cleaning
process. This process is also applied to MEDC’s internal PII dataset in order to both
improve consistency between datasets and identify/remove erroneous data points.

Page 4

1. 	Records are de-duplicated on the unique identifier.

2. 	String Fields (first/last name, street address, city, state, zip code):

1. All strings are converted to uppercase and trimmed of leading and trailing
whitespace.

2. All characters not A-Z, 0-9, spaces, single apostrophes, or hyphens are
removed.

3. All strings which match any of a list of common missing value tokens (e.g.
“UNK” or “NA”) are removed.

3. 	Date Fields (date of birth)

1. The date format (e.g. D/M/Y, YMD, etc.) is inferred based on a random
sample of 1000 records.

2. The field is parsed according to the estimated format, with all invalid dates3
removed.

4. 	Records missing either a last name or a date of birth are noted and removed
from matching, as these fields are required for our process.

Some summary statistics about the incoming dataset are also generated at the same
time that records are being cleaned:

•	 How many records will be matched?

•	 How many records are being matched against?

•	 For each matching field

•	 What percent of values are unique?

•	 What percent of values are missing?

•	 How many records appear to have

•	 duplicates with the same ID?

•	 unusual characters that would be removed by the validation process?	

Page 5

Example 1: Two Small Datasets
•	 50 records to be matched
•	 100 records to match against
•	 Total comparisons: 5,000
•	 Evaluation time at 10,000

comparisons/sec: 0.5 seconds

Example 2: Two Large Datasets
•	 1 million records to be matched
•	 3 million records to match against
•	 Total comparisons: 3 trillion
•	 Evaluation time at 10,000

comparisons/sec: ~9 ½ years

Clearly, some form of efficiency
is needed in order to reduce the
computational time needed to perform
a large match. A common solution
is to implement various “blocking”
strategies, in which records with
similar characteristics are identified
in both datasets such that we are
maximally sure that, for a given record,
its corresponding matching record
from the opposite dataset is present in
the same block. The matching
process then only needs to operate
within each block, rather than
performing a pairwise set of
comparisons between datasets.

Blocking is highly effective at reducing
the number of comparisons made.

Blocking
Since the goal of matching is to find the matching record from one dataset in another,
an intuitive approach might be to iterate over each incoming record and try to find the
corresponding record in the other dataset. Although this method is reasonable in small
datasets, it scales poorly as the size of each dataset increases:

Dataset B

D
at

as
et

 A

Dataset B

Dataset B
D

at
as

et
 A

D
at

as
et

 A

Comparisons with Blocking

Comparisons with two blocks

Pairwise Comparison without Blocking

Comparisons

Comparisons

Comparisons

No Comparison

No Comparison

No Comparison

Figure 1 - Visualizing Various Blocking Methods

Page 6

For example, a very simple blocking method – by gender – applied to the large dataset
example from above (assuming an equal distribution of gender in each dataset) would
now look like this:

Example 3: Two Large Datasets
•	 1 million records to be matched
•	 3 million records to match against
•	 Blocks:

•	 Female Block: 500k records matched against 1.5 million records
•	 Male Block: 500k records matched against 1.5 million records

•	 Total comparisons: 1.5 trillion
•	 Evaluation time at 10,000 comparisons/sec: ~ 4 ¾ years

This blocking strategy in the third example might be visualized as the middle image
of Figure 1 – here we no longer have to match 50% of the records against each other,
only the shaded area are included in the evaluation. More complex blocking methods
might look like the bottom image, in which significantly more of the records are never
directly compared. More restrictive and complex blocking mechanisms can be
introduced for large datasets that further reduce the computational time until we
reach fairly modest run times for even the largest datasets. The tradeoff with blocking,
however, is that we enforce a certain unknown proportion of false negative matches.
False negative matches are matches which a perfect record matching model would
have made had it seen both records, but because those records were placed into
separate blocks they were never directly compared (in Example 3, a record which
should be matched, but that contained a different gender in each dataset). We can
alleviate this drawback by including multiple blocking schemes so that two records
that one scheme might place into separate blocks could still be compared if they fell
into the same block in another scheme.

Blocking methods can be evaluated by three metrics:
•	 Reduction Ratio: How efficient is this blocking method at reducing the number of

comparisons?
•	 Pair Completeness: How often are matching record pairs put into the same block?

Page 7

•	 Pair Quality: What proportion of pairwise comparisons within a block will be
performed on a matching record pair?

Blocking has the additional benefit of being an inherently parallelizable problem. Since
no block ever relies on the result of any other block, we can easily scale our solution to
the number of available processing cores – sending each block out for calculation and
appending the result as it completes. This allows us to complete even very large record
matches in a few hours.

MEDC’s matching process contains two blocking schemes:
•	 Blocking by Exact Date of Birth
•	 Blocking by the Phonetic Encoding of Last Name

•	 The Soundex4 of the full last name is always taken as a block
•	 If the last name contains any hyphens or spaces, each part is looked at in

turn.5

•	 If the name segment is longer than three characters6, the record also
belongs to the block designated by that Soundex

Figure 2 contains some examples of this blocking method applied to two pairs of
invented records. In the first pair of rows, we can see that these two records will be
compared twice – once in the “12/18/1994” block as well as once in the “J520” block.
In the second pair, we have two records with slightly different birthdates, so they
will end up in different birthday blocks. They will, however, be compared against one
another in the “R263” block.

Last Name DOB Block Memberships

Smith-Jones

Jones

Richards

Richard

12/18/1994

12/18/1994

5/24/1993

5/29/1993

12/18/1994, S532, S530, J520

12/18/1994, J520

5/26/1993, R263

5/29/1993, R263

Figure 2 - Example Blocks Generated From Last Name / Date Of Birth

Page 8

Based on internal experimentation on our “truth” datasets, these two methods were
chosen for being both highly likely to contain true matches as well as vastly reducing
the number of comparisons required of the matching model. Enforced false negatives
will occur only when a true match contains both an incorrect birth date and a last
name significantly different enough to be assigned a different Soundex.7

Matching
Within a probabilistic matching model, there are three hurdles that need to be
overcome:
•	 How to handle the number of comparisons necessary to find all potential matches
•	 How to calculate a similarity “score” for a given pair of records
•	 How to calculate a similarity “score” for a field within a pair of records

The first hurdle is addressed with blocking – we will essentially turn the one giant
matching problem into a series of much more reasonably sized matching problems,
aware that we may be enforcing a certain number of missed matches in exchange for
shorter calculation time. The second two hurdles are now much more surmountable:
within a given pair of blocks. We now need to identify a way of calculating how similar
each pair of records are, and in order to do this, we need to be able to calculate how
similar two fields are between a pair of records.

Field Matching
For some very simple fields, like gender, we can use a simple Boolean match – that
is, if the genders of a pair of records are the same, then they score a 1. If they are
different, they score a 0. What we’re really interested in regarding our model, however,
is how to incorporate a level of “fuzzy” matching that will allow us to pick up on minor
spelling variations between words or names.

Our process uses a string metric called “Jaro-Winkler distance” (Winkler 1990) to
quantify how similar two strings are on a scale of 0-1. The JaroWinkler algorithm
takes into account the number of characters that match in each sequence, putting
extra weight on a proportion of the first characters8 and lessening the negative impact
of transposed characters. For our purposes, string pairs are considered “matching” if

Page 9

their Jaro-Winkler distance is greater than 0.92, “similar” if their distance is between
0.92 and 0.88, and “no match” if below 0.88. As demonstrated by Figure 3, identical
or nearly identical names are given a very high score, whereas dissimilar names fall
below the match threshold.

Name 1 Name 2 Jaro-Winkler Distance

Roberts

Jacobson

Smith

Jones

Roberts

Jacobosn

Smyth

Johnson

1.000

0.975

0.893

0.832

Figure 3 - Jaro-Winkler Distance For Example Name Pairs

Richards Christoph 0.593

We can also implement a level of fuzziness in numerical fields – with Year of Birth, for
instance, we consider identical years “matching”, while records within +/- one year
“similar”9.

The matching model MEDC uses is an unsupervised version of the Fellegi-Sunter
probabilistic model (Fellegi and Sunter 1969) as implemented by the open source
fastLink R library10 and tailored to our particular use case. The Fellegi-Sunter
model estimates the probability of a given match given a pattern of agreement and
disagreement between the features of two records.

Traditionally, the model requires a certain amount of labelled data in the form of a
“ground truth” and estimates two probabilities for each field:

m: “How likely is it that in a given record pair these two fields will match when they
are a true match?”

u: “How likely is it that in a given record pair these two fields will match entirely by
chance?”

Field Matching

Page 10

As an example, let’s take two datasets with two fields – gender and last name. Within
our labelled data, we can see that when two records are labelled as a match, there is
agreement within the gender field 90% of the time and within the last name field 95%
of the time. We can also see that in pairs that are not labelled as matches, there is
agreement by chance in the gender field 50% of the time, and in the last name field
.01% of the time. These are our m and u values from which we can calculate a weight
to give to the probability of either a match or a nonmatch.

Gender Fields Match

Last Name Fields Match

Pair is a Match

m = 0.9

m = 0.95

Pair is Not a Match

u = 0.5

u = 0.01

What this tells the model is that a gender that matches is an indicator that this pair
might match, but a nonmatching gender field should not make us at all certain that
this is not a match, since that happens regularly. Identical last names, on the other
hand, are a pretty strong indicator that the pair is a match, since matching pairs nearly
always share a last name. It also is a strong indicator in favor of making non-matches,
since it is fairly rare that two last names will agree by chance. Taken together, we
would be more confident in making a match when both gender and last name agree
than if either did not, and although we might still be willing to consider a match where
the last name matched and the gender didn’t, we would be far less confident in a pair
where gender matched and last name didn’t.

What we don’t have in our use case, and what this model expects, is a set of labelled
data. A researcher who requests a match is only providing a collection of PII, and
we have no way of knowing in advance how much variation in spelling/birthdates/
address exists and thus no way of directly assigning values to m and u for each field.
We could obtain this with some human effort – with each incoming match, we might
identify approximately a thousand most likely pairs and calculate the m/u parameters
for the Fellegi-Sunter model based on those labels. That would require a significant
expenditure of expensive human effort, so the fastLink package attempts to
estimate these parameters with the Expectation Maximization (EM) algorithm in order
to best approximate what m and u should be for each field given the records.

Broadly, the EM algorithm in this context looks at how often each combination of a
given pattern of Match/Partial/Non-Match appears between all records and iteratively
tries to estimate how to best assign m/u parameters for each field so that the model
will properly discriminate between matches/non-matches.11 In early experimentation,
we determined that this methodology appeared to perform at least on par with other
methods and in some cases, even outperformed models that required human input.

Post-Analysis
As part of the output of the matching model, each pair of predicted matches has
associated with it a posterior probability – a value between 0 and 1 that indicates how
“sure” the model is that the pair of records represents a true match. In cases where all
fields are identical, we would expect this probability to be almost 1. Conversely, we
would also expect there to be a subset of records in the incoming dataset that do not
exist in our dataset, and we would expect these probabilities to be near 0, since no
close match should exist. However there will also exist a certain number of records for
which the probability falls somewhere between the extremes, where the model
found a “maybe” match. While with small matches it might be possible to hand label
all of these “maybe” matches, this becomes far too time expensive at larger scales, and
so we have to identify a threshold at which we are willing to accept a match.

It may be tempting to set the threshold very high – 0.99 for instance – and only retain
those matches about which the model was very certain in order to minimize the
incidence of incorrect matches. This would likely result in discarding a large number of
possibly good matches, but we would be highly confident in the matches we did have.
On the other hand, we might be willing to set the threshold very low – say 0.40 –
with the understanding that we are willing to take the risk of including a number of
incorrect matches in exchange for more matches overall. In either case, we are not
truly able to quantify the risk we would be taking.

Page 11

Metrics

What we can do to quantify the risk is to select a random sample of matches that were
returned by the model and label this subset in expectation that it will be representative

enough of the overall match to make reasonable estimations of how many errors exist
at a given threshold.12 With our labeled subset of data, we can identify the different
types of “good” and “bad” matches that exist in our output:

True Positives = The model predicted a match, and the human annotators agree

False Positives = The model predicted a match, and the human annotators disagree
(Type 1 Error)

False Negatives = The model doesn’t predict a match humans say should exist (Type II
Error)

True Negatives = The model did not predict a match and neither did the human
annotators

Page 12

By counting the total number of each of these types of matches that we see in our
labelled data, we can calculate two further statistics:

With these in hand, we can now look at our labeled data and see how the match
would score at various thresholds. As we change the threshold, we are no longer
claiming the model would have predicted that records below a given probability
would be a match, so we are removing false positives at the cost of introducing false
negatives. In general, we expect that at a threshold of 0, at which we accept every
match regardless of how certain the model is, recall will be very high and precision
is very low. As we increase the threshold, recall will began to drop, and precision
will increase as we eliminate “maybe” matches, until at a point the only matches that
remain are those of which the model was almost certain.

Precision = True Positives
True Positives + False Positives = Of all of the matches predicted, what proportion

 were correct?

Recall = True Positives
True Positives + False Negatives = Of matches that should exist, how many

 were predicted?

What we are still missing here is a metric that helps us to identify where we should
be setting the threshold for a given match. Take for example a hypothetical match
that attempted to match 50 records to 200 records. We would perform 10,000 total
comparisons, of which, at best, 50 would be true positives and 9,950 true negatives.
If we assume that some of the matches were incorrect, as in Figure 4, then accuracy
(# correct out of total predictions) gives us an unclear view of how well the match
performed because, as we are performing a pairwise comparison, True Negatives
dominate any calculation. Matching more than 1/5 of all of the records incorrectly is
not an ideal outcome, but the accuracy metric might suggest that we had actually
performed well. What we need instead is a metric that will ignore the false negatives
in our data:

Page 13

Figure 4 - Accuracy on a Hypothetical Match

Match

No Match
Predicted

35

5

10

9940
0.999

Match No Match Accuracy

Actual

F score = 2 x Precision x Recall
Precision + Rec = Harmonized Mean of Precision and Recall1

F1 score is a common metric applied in binary prediction tasks to evaluate the
performance of a classifier. Here, we are also making a binary classification – is a
record a match or not? We can see that in our hypothetical match from before, the F1
score is much lower than the accuracy and better reflects the quality of the match.
We still managed to correctly match 35 of our records, but the influence of the 15
incorrect matches is still visible in the score.13

By using an F1 score, we are providing equal weight to Precision and Recall, by which
we seek to minimize the overall error rate of the output by locating the threshold
at which F1 is at its highest. Although this will result in a less conservative overall
matching result, some literature suggests that being too restrictive within matching
criteria is detrimental to the result of a study that incorporates the match (Tahmont, et
al. 2019). 14

Page 14

Setting a Threshold

Applying this to a match, we can calculate these metrics at a variety of thresholds and
identify the point at which the F1 score was at its highest point. Figure 6 is a plot of
these metrics from an early match performed by MEDC. We can see the precision of
the match increasing as we raise the threshold while recall remains mostly constant.
However once the threshold starts to exceed 0.70, we begin to eliminate from the
match some record pairs that were labelled as “correct”. Once we hit a threshold value

Figure 6 - Precision (Orange), F1 Score (Blue), and Recall (Green) Of a Sample
Match By Posterior Threshold

Figure 5 - F1 Score on a Hypothetical Match

Match

No Match
Predicted

35

5

10

9940
0.999

Match No Match Accuracy

Actual

0.824

 F1 Score

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.00 .2 0.40 .6 0.81 .0

Sc
or

e

Precision/Recall/F1 by Posterior Threshold - MSP_match.csv

Posterior Threshold (best: 0.88 w/ febeta 1)

variable
fbeta_score
precision
recall

Page 15

of 0.90, the decrease in recall is enough to start balancing out the increase in precision
and the overall F1 descends from this point on. For this particular match, a threshold of
0.88 was identified.

Matching
Upon completion of the entire matching process, we are able to provide the researcher
with
•	 Summary Statistics collected before the match about the incoming dataset
•	 A csv with:

•	 A plot of the precision/recall/F1 score by threshold indicating why that threshold
was selected

•	 The unique Identifier provided by the researcher in their dataset
•	 A unique Identifier from our dataset that was determined to be the best

match
•	 A value indicating how confident our model is that the records are a match

•	 A label indicating anything unusual about the record pair (e.g. it failed
validation, was manually labelled, etc.)

Page 16

Endnotes
1. It is also important to note that the “truth” data we deal with here is not an objective
truth, as often exists in traditional machine learning. The labeled pairs represent
a human’s opinion on a pair of data points, and it is entirely possible that they are
mistaken – two individuals with the same name born on the same day is rare, but not
impossible.

2. Last name and date of birth represent the minimum amount of data with which a
match can be performed; additional information will improve the quality of the match.

3. “Invalid” dates would be those dates which either do not exist in the calendar (e.g.
February 30th or 14/06/2001), are far too old (likely placeholders, like 1/1/1900), or
are in the future.

4. Soundex is a phonetic algorithm that attempts to encode a name such that
homophones like “Smith” and “Smyth” are given the same code. The code consists
of the first letter of the name followed by three digits which represent the consonant
sounds after the first letter. An overview of the encoding rules is available at https://
www.archives.gov/research/census/soundex.html.

5. Since Soundex appends zeros to a code if the name is short, we can often end up
with compound last names receiving a different Soundex code than either last name
on its own – e.g. “Smith” would be encoded as “S530”, but “Smith-Jones” would be
encoded as “S532”, with the last “2” coming from the “J” in “Jones”. By encoding each
last name segment as well as the overall name, we can ensure that “Smith-Jones” will
end up in a block with all of the other “Smith-Jones” records as well as “Smith” and
“Jones” records.

6. A minimum length was chosen to avoid creating very large blocks for names which
contain name affixes like “de la”, “al” and “von”.

7. We are currently using “Standard Blocking” in our approach, but there are many
alternative methods – see (Baxter, Christen and Churches 2003) and (Steorts, et al.
2014) for a description of more advanced methods.

Page 17

8. In data which is manually entered into an electronic system, entry errors are more
likely to occur after the first few letters. This weighting will ensure that “Johnson”
and “Jonson” – two different names - are not considered as similar as “Johnson” and
“Johnosn” – the result of a typographical error.

9. Date fields offer an unusual challenge in that, though they could be considered
Boolean matches, we might allow for specific rules that provide for partial matches
where common clerical mistakes occur – for example, data entry off of a handwritten
document mistaking a “4” for a “9”. This is not yet implemented in our model.

10. https://github.com/kosukeimai/fastLink

11. See (Abramitzky, Mill and Perez 2018) for an in depth explanation of the method.

12. Through experimentation, we have determined that at minimum, 200 labelled
examples are needed to give a reasonable estimate.

13. An alternative metric might be FBeta, which is an F1 score in which the relative
importance of Precision and Recall is determined by a value Beta – a more
conservative metric might be to use a beta of 0.5, indicating that we consider Precision
twice as important as recall.

14. For example, a match with 2% false positives and 2% false negatives has an
overall lower error rate than if a more restrictive criteria were used, decreasing the
false positive rate to 1% at the cost of 5% false negatives.

Page 18

References
Abramitzky, Ran, Roy Mill, and Santiago Perez. 2018. "Linking Individuals Across

Historical Sources: a Fully Automated Approach." National Bureau of
Economic Research. http://www.nber.org/papers/w24324.

Baxter, Rohan, Peter Christen, and Tim Churches. 2003. "A Comparison of Fast
Blocking Methods for Record Linkage." Proc. of ACM SIGKDD'03 Workshop
on Data Cleaning, Record Linkage, and Object Consolidation.

Fellegi, Ivan P, and Alan B Sunter. 1969. "A Theory of Record Linkage." Journal of the
American Statistical Association 1183-1210.

Steorts, Rebecca C, Samuel L Ventura, Mauricio Sadinle, and Stephen E Feinberg.
2014. "A Comparison of Blocking Methods for Record Linkage." CoRR
abs/1407.3191. http://arxiv.org/abs/1407.3191.

Tahmont, Sarah, Zubin Jelveh, Aaron Chalfin, Shi Yan, and Benjamin Hansen. 2019.
"Administrative Data Linking and Statistical Power Problems in Randomized
Experiments." National Bureau of Economic Research. doi:10.3386/w25657.

Winkler, Willian E. 1990. "String Comparator Metrics and Enhanced Decision Rules in
the Fellegi-Sunter Model of Record Linkage." Proceedings of the Section on
Survey Research Methods (American Statistical Association) 354-359.

