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Introduction
Individual student records within educational datasets maintained by the Michigan 
Education Data Center (MEDC) are labelled with a unique identifier, generated by 
the State of Michigan, which allows researchers looking to perform analysis across 
multiple datasets to be fairly certain which records correspond to the same individual. 
However, this limits the scope of any analysis to these internal datasets and the 
variables they contain. In an instance where a researcher has access to an external 
dataset, they would be unable to investigate any relations between that dataset and 
MEDC’s data.

In addition to educational research datasets, MEDC also maintains a dataset 
containing the personally identifiable information (PII) of a large proportion of 
Michigan’s K-12 student, post-secondary student and K12 staff populations, 
including full names, dates of birth, racial/ethnic status, and addresses, each of which 
is associated with the state’s unique identifier. With these datasets, MEDC has 
developed a probabilistic matching model that allows it to match MEDC data with 
external data in cases where the external dataset contains at least some personally 
identifiable information in common.

The objective of this document is to provide a mid- to high-level overview of the 
process by which MEDC performs a probabilistic match between any incoming 
dataset and the PII datasets maintained in house. We provide a broad overview 
of some of the major concepts relevant to record linkage, including data cleaning, 
blocking, performing field and record level comparisons, and evaluation metrics and 
techniques. For more information, please find a list of references that go into some of 
these topics at far greater detail at the end of this document. 
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"Truth” Data 
One of the main difficulties with regard to record linkage is obtaining a reliable and 
accurate “truth” dataset. Without having some idea of which records ought to be 
linked to which, it is impossible to determine just how well any particular method is 
performing or to identify areas in which a particular approach is struggling. To that 
end, projects which are not already provided with a labeled subset of data will often 
opt for hand curated truth sets, in which a selection of likely record pairs is annotated 
by hand, indicating which pairs of records humans are likely to consider matching.1 
This is a time intensive approach to the problem, which is somewhat alleviated these 
days with projects like Amazon’s Mechanical Turk, but is one method of arriving at a 
reliable “truth” on which to base a project.

Our data, however, is of a sensitive nature which prevents us from looking outside of 
MEDC for any large scale labelling, and so we were required to look at other methods 
for arriving at a “truth”. We eventually settled on creating two datasets with which to 
measure our approach:
 

•	 A small subset of data (2,000 pairs), taken from the PII dataset and an in-house 
research project dataset were hand labeled by staff. Each pair was labelled as 
either match/no match by three annotators, with disagreeing annotation decided 
by majority (<1% of pairs).

•	 A synthetic dataset was created programmatically via a Python script. The script 
takes a dataset as input and randomly introduces errors into records. The rate 
at which errors appear and the proportions of errors are tunable via a collection 
of rules and probabilities; this allows us to quickly generate large simulated 
matches, labeled not only with the absolute truth, but also with an indication of 
what modifications were made to a given record.
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Being driven by parameters, the synthetic data set is likely not entirely representative 
of the kind of datasets we might see for a match – we are assuring that certain types 
of errors will occur within a certain percentage of the records. By the nature of the 
project, we cannot know beforehand how common particular errors are before
beginning a match, and at best, we can have little more than an expectation for how 
much intersection there might be between two sets of data. A synthetic set allows us 
to experiment with different settings. For example, we can contrast the performance 
of one model when 99% of the data points should have a true match as opposed to 
10% and modify our approach to address both.

The hope behind the synthetic data is two-fold. First, we hoped that by testing on 
synthetic datasets, we can identify what kinds of perturbations are most effective at 
forcing an error for a given model and adjust our approach accordingly. Second, we 
wanted to ensure that our approaches were feasible at the extreme end of the scale 
of the data we expected to receive. Since we were unable to obtain enough curated 
labels to test at larger sizes, the synthetic sets were used to check the performance of 
our approach on very large matches.

Process
In order to perform a match, MEDC requires an incoming dataset to contain at the 
minimum a unique identifier per record, a last name field, and a date of birth field.2 

Any additional information which can be provided by a researcher regarding their 
dataset (e.g. matches should only occur in a given geographical area or age range) 
will also help reduce the incidence of false positives in matching results.

Datasets submitted to MEDC for matching are all subject to an identical cleaning 
process. This process is also applied to MEDC’s internal PII dataset in order to both 
improve consistency between datasets and identify/remove erroneous data points. 
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1. 	Records are de-duplicated on the unique identifier.

2. 	String Fields (first/last name, street address, city, state, zip code):

1. All strings are converted to uppercase and trimmed of leading and trailing 
whitespace.

2. All characters not A-Z, 0-9, spaces, single apostrophes, or hyphens are 
removed.

3. All strings which match any of a list of common missing value tokens (e.g. 
“UNK” or “NA”) are removed.

3. 	Date Fields (date of birth)

1. The date format (e.g. D/M/Y, YMD, etc.) is inferred based on a random 
sample of 1000 records. 

2. The field is parsed according to the estimated format, with all invalid dates3 
removed. 

4. 	Records missing either a last name or a date of birth are noted and removed 
from matching, as these fields are required for our process. 

Some summary statistics about the incoming dataset are also generated at the same 
time that records are being cleaned:

•	 How many records will be matched?

•	 How many records are being matched against?

•	 For each matching field

•	 What percent of values are unique?

•	 What percent of values are missing?

•	 How many records appear to have

•	 duplicates with the same ID?

•	 unusual characters that would be removed by the validation process?	
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Example 1: Two Small Datasets
•	 50 records to be matched
•	 100 records to match against
•	 Total comparisons: 5,000
•	 Evaluation time at 10,000 

comparisons/sec: 0.5 seconds

Example 2: Two Large Datasets
•	 1 million records to be matched 
•	 3 million records to match against
•	 Total comparisons: 3 trillion
•	 Evaluation time at 10,000 

comparisons/sec: ~9 ½ years

Clearly, some form of efficiency 
is needed in order to reduce the 
computational time needed to perform 
a large match. A common solution 
is to implement various “blocking” 
strategies, in which records with 
similar characteristics are identified 
in both datasets such that we are 
maximally sure that, for a given record, 
its corresponding matching record 
from the opposite dataset is present in 
the same block. The matching
process then only needs to operate 
within each block, rather than 
performing a pairwise set of 
comparisons between datasets.

Blocking is highly effective at reducing 
the number of comparisons made. 

Blocking
Since the goal of matching is to find the matching record from one dataset in another, 
an intuitive approach might be to iterate over each incoming record and try to find the 
corresponding record in the other dataset. Although this method is reasonable in small 
datasets, it scales poorly as the size of each dataset increases:
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Figure 1 - Visualizing Various Blocking Methods
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For example, a very simple blocking method – by gender – applied to the large dataset 
example from above (assuming an equal distribution of gender in each dataset) would 
now look like this:

Example 3: Two Large Datasets
•	 1 million records to be matched
•	 3 million records to match against
•	 Blocks:

•	 Female Block: 500k records matched against 1.5 million records
•	 Male Block: 500k records matched against 1.5 million records

•	 Total comparisons: 1.5 trillion
•	 Evaluation time at 10,000 comparisons/sec: ~ 4 ¾ years

This blocking strategy in the third example might be visualized as the middle image 
of Figure 1 – here we no longer have to match 50% of the records against each other, 
only the shaded area are included in the evaluation. More complex blocking methods 
might look like the bottom image, in which significantly more of the records are never
directly compared. More restrictive and complex blocking mechanisms can be 
introduced for large datasets that further reduce the computational time until we 
reach fairly modest run times for even the largest datasets. The tradeoff with blocking, 
however, is that we enforce a certain unknown proportion of false negative matches. 
False negative matches are matches which a perfect record matching model would 
have made had it seen both records, but because those records were placed into 
separate blocks they were never directly compared (in Example 3, a record which 
should be matched, but that contained a different gender in each dataset). We can 
alleviate this drawback by including multiple blocking schemes so that two records 
that one scheme might place into separate blocks could still be compared if they fell 
into the same block in another scheme.

Blocking methods can be evaluated by three metrics:
•	 Reduction Ratio: How efficient is this blocking method at reducing the number of 

comparisons?
•	 Pair Completeness: How often are matching record pairs put into the same block?
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•	 Pair Quality: What proportion of pairwise comparisons within a block will be 
performed on a matching record pair?

Blocking has the additional benefit of being an inherently parallelizable problem. Since 
no block ever relies on the result of any other block, we can easily scale our solution to 
the number of available processing cores – sending each block out for calculation and 
appending the result as it completes. This allows us to complete even very large record 
matches in a few hours.

MEDC’s matching process contains two blocking schemes:
•	 Blocking by Exact Date of Birth
•	 Blocking by the Phonetic Encoding of Last Name

•	 The Soundex4 of the full last name is always taken as a block
•	 If the last name contains any hyphens or spaces, each part is looked at in 

turn.5

•	 If the name segment is longer than three characters6, the record also 
belongs to the block designated by that Soundex

Figure 2 contains some examples of this blocking method applied to two pairs of 
invented records. In the first pair of rows, we can see that these two records will be 
compared twice – once in the “12/18/1994” block as well as once in the “J520” block. 
In the second pair, we have two records with slightly different birthdates, so they 
will end up in different birthday blocks. They will, however, be compared against one 
another in the “R263” block.

Last Name DOB Block Memberships

Smith-Jones

Jones

Richards

Richard

12/18/1994

12/18/1994

5/24/1993

5/29/1993

12/18/1994, S532, S530, J520 

12/18/1994, J520

5/26/1993, R263 

5/29/1993, R263

Figure 2 - Example Blocks Generated From Last Name / Date Of Birth
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Based on internal experimentation on our “truth” datasets, these two methods were 
chosen for being both highly likely to contain true matches as well as vastly reducing 
the number of comparisons required of the matching model. Enforced false negatives 
will occur only when a true match contains both an incorrect birth date and a last 
name significantly different enough to be assigned a different Soundex.7

Matching
Within a probabilistic matching model, there are three hurdles that need to be 
overcome:
•	 How to handle the number of comparisons necessary to find all potential matches
•	 How to calculate a similarity “score” for a given pair of records 
•	 How to calculate a similarity “score” for a field within a pair of records

The first hurdle is addressed with blocking – we will essentially turn the one giant 
matching problem into a series of much more reasonably sized matching problems, 
aware that we may be enforcing a certain number of missed matches in exchange for 
shorter calculation time. The second two hurdles are now much more surmountable:
within a given pair of blocks. We now need to identify a way of calculating how similar 
each pair of records are, and in order to do this, we need to be able to calculate how 
similar two fields are between a pair of records.

Field Matching
For some very simple fields, like gender, we can use a simple Boolean match – that 
is, if the genders of a pair of records are the same, then they score a 1. If they are 
different, they score a 0. What we’re really interested in regarding our model, however, 
is how to incorporate a level of “fuzzy” matching that will allow us to pick up on minor 
spelling variations between words or names.

Our process uses a string metric called “Jaro-Winkler distance” (Winkler 1990) to 
quantify how similar two strings are on a scale of 0-1. The JaroWinkler algorithm 
takes into account the number of characters that match in each sequence, putting 
extra weight on a proportion of the first characters8 and lessening the negative impact 
of transposed characters. For our purposes, string pairs are considered “matching” if
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their Jaro-Winkler distance is greater than 0.92, “similar” if their distance is between 
0.92 and 0.88, and “no match” if below 0.88. As demonstrated by Figure 3, identical 
or nearly identical names are given a very high score, whereas dissimilar names fall 
below the match threshold.

Name 1 Name 2 Jaro-Winkler Distance

Roberts

Jacobson

Smith

Jones

Roberts

Jacobosn

Smyth

Johnson

1.000

0.975

0.893

0.832

Figure 3 - Jaro-Winkler Distance For Example Name Pairs

Richards Christoph 0.593

We can also implement a level of fuzziness in numerical fields – with Year of Birth, for 
instance, we consider identical years “matching”, while records within +/- one year 
“similar”9.

The matching model MEDC uses is an unsupervised version of the Fellegi-Sunter 
probabilistic model (Fellegi and Sunter 1969) as implemented by the open source 
fastLink R library10 and tailored to our particular use case. The Fellegi-Sunter 
model estimates the probability of a given match given a pattern of agreement and 
disagreement between the features of two records.

Traditionally, the model requires a certain amount of labelled data in the form of a 
“ground truth” and estimates two probabilities for each field: 

m: “How likely is it that in a given record pair these two fields will match when they 
are a true match?”

u: “How likely is it that in a given record pair these two fields will match entirely by 
chance?”

Field Matching
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As an example, let’s take two datasets with two fields – gender and last name. Within 
our labelled data, we can see that when two records are labelled as a match, there is 
agreement within the gender field 90% of the time and within the last name field 95% 
of the time. We can also see that in pairs that are not labelled as matches, there is
agreement by chance in the gender field 50% of the time, and in the last name field 
.01% of the time. These are our m and u values from which we can calculate a weight 
to give to the probability of either a match or a nonmatch.

Gender Fields Match

Last Name Fields Match 

Pair is a Match

m = 0.9

m = 0.95

Pair is Not a Match

u = 0.5

u = 0.01

What this tells the model is that a gender that matches is an indicator that this pair 
might match, but a nonmatching gender field should not make us at all certain that 
this is not a match, since that happens regularly. Identical last names, on the other 
hand, are a pretty strong indicator that the pair is a match, since matching pairs nearly 
always share a last name. It also is a strong indicator in favor of making non-matches, 
since it is fairly rare that two last names will agree by chance. Taken together, we 
would be more confident in making a match when both gender and last name agree 
than if either did not, and although we might still be willing to consider a match where 
the last name matched and the gender didn’t, we would be far less confident in a pair 
where gender matched and last name didn’t.

What we don’t have in our use case, and what this model expects, is a set of labelled 
data. A researcher who requests a match is only providing a collection of PII, and 
we have no way of knowing in advance how much variation in spelling/birthdates/
address exists and thus no way of directly assigning values to m and u for each field. 
We could obtain this with some human effort – with each incoming match, we might 
identify approximately a thousand most likely pairs and calculate the m/u parameters 
for the Fellegi-Sunter model based on those labels. That would require a significant 
expenditure of expensive human effort, so the fastLink package attempts to
estimate these parameters with the Expectation Maximization (EM) algorithm in order 
to best approximate what m and u should be for each field given the records.



Broadly, the EM algorithm in this context looks at how often each combination of a 
given pattern of Match/Partial/Non-Match appears between all records and iteratively 
tries to estimate how to best assign m/u parameters for each field so that the model 
will properly discriminate between matches/non-matches.11 In early experimentation, 
we determined that this methodology appeared to perform at least on par with other 
methods and in some cases, even outperformed models that required human input. 

Post-Analysis
As part of the output of the matching model, each pair of predicted matches has 
associated with it a posterior probability – a value between 0 and 1 that indicates how 
“sure” the model is that the pair of records represents a true match. In cases where all 
fields are identical, we would expect this probability to be almost 1. Conversely, we
would also expect there to be a subset of records in the incoming dataset that do not 
exist in our dataset, and we would expect these probabilities to be near 0, since no 
close match should exist. However there will also exist a certain number of records for 
which the probability falls somewhere between the extremes, where the model
found a “maybe” match. While with small matches it might be possible to hand label 
all of these “maybe” matches, this becomes far too time expensive at larger scales, and 
so we have to identify a threshold at which we are willing to accept a match. 

It may be tempting to set the threshold very high – 0.99 for instance – and only retain 
those matches about which the model was very certain in order to minimize the 
incidence of incorrect matches. This would likely result in discarding a large number of 
possibly good matches, but we would be highly confident in the matches we did have.
On the other hand, we might be willing to set the threshold very low – say 0.40 – 
with the understanding that we are willing to take the risk of including a number of 
incorrect matches in exchange for more matches overall. In either case, we are not 
truly able to quantify the risk we would be taking.
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Metrics

What we can do to quantify the risk is to select a random sample of matches that were 
returned by the model and label this subset in expectation that it will be representative 



enough of the overall match to make reasonable estimations of how many errors exist 
at a given threshold.12 With our labeled subset of data, we can identify the different 
types of “good” and “bad” matches that exist in our output: 

True Positives = The model predicted a match, and the human annotators agree

False Positives = The model predicted a match, and the human annotators disagree 
(Type 1 Error)

False Negatives = The model doesn’t predict a match humans say should exist (Type II 
Error)

True Negatives = The model did not predict a match and neither did the human 
annotators
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By counting the total number of each of these types of matches that we see in our 
labelled data, we can calculate two further statistics: 

With these in hand, we can now look at our labeled data and see how the match 
would score at various thresholds. As we change the threshold, we are no longer 
claiming the model would have predicted that records below a given probability 
would be a match, so we are removing false positives at the cost of introducing false 
negatives. In general, we expect that at a threshold of 0, at which we accept every 
match regardless of how certain the model is, recall will be very high and precision 
is very low. As we increase the threshold, recall will began to drop, and precision 
will increase as we eliminate “maybe” matches, until at a point the only matches that 
remain are those of which the model was almost certain. 

Precision = True Positives
True Positives + False Positives = Of all of the matches predicted, what proportion

    were correct? 

Recall = True Positives
True Positives + False Negatives = Of matches that should exist, how many

    were predicted?



What we are still missing here is a metric that helps us to identify where we should 
be setting the threshold for a given match. Take for example a hypothetical match 
that attempted to match 50 records to 200 records. We would perform 10,000 total 
comparisons, of which, at best, 50 would be true positives and 9,950 true negatives. 
If we assume that some of the matches were incorrect, as in Figure 4, then accuracy 
(# correct out of total predictions) gives us an unclear view of how well the match 
performed because, as we are performing a pairwise comparison, True Negatives 
dominate any calculation. Matching more than 1/5 of all of the records incorrectly is
not an ideal outcome, but the accuracy metric might suggest that we had actually 
performed well. What we need instead is a metric that will ignore the false negatives 
in our data: 
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Figure 4 - Accuracy on a Hypothetical Match

Match

No Match
Predicted

35

5

10

9940
0.999

Match No Match Accuracy

Actual

F  score = 2 x Precision x Recall
Precision + Rec = Harmonized Mean of Precision and Recall1

F1 score is a common metric applied in binary prediction tasks to evaluate the 
performance of a classifier. Here, we are also making a binary classification – is a 
record a match or not? We can see that in our hypothetical match from before, the F1 
score is much lower than the accuracy and better reflects the quality of the match. 
We still managed to correctly match 35 of our records, but the influence of the 15 
incorrect matches is still visible in the score.13

By using an F1 score, we are providing equal weight to Precision and Recall, by which 
we seek to minimize the overall error rate of the output by locating the threshold 
at which F1 is at its highest. Although this will result in a less conservative overall 
matching result, some literature suggests that being too restrictive within matching 
criteria is detrimental to the result of a study that incorporates the match (Tahmont, et 
al. 2019). 14 
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Setting a Threshold

Applying this to a match, we can calculate these metrics at a variety of thresholds and 
identify the point at which the F1 score was at its highest point. Figure 6 is a plot of 
these metrics from an early match performed by MEDC. We can see the precision of 
the match increasing as we raise the threshold while recall remains mostly constant.
However once the threshold starts to exceed 0.70, we begin to eliminate from the 
match some record pairs that were labelled as “correct”. Once we hit a threshold value 

Figure 6 - Precision (Orange), F1 Score (Blue), and Recall (Green) Of a Sample 
Match By Posterior Threshold

Figure 5 - F1 Score on a Hypothetical Match
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of 0.90, the decrease in recall is enough to start balancing out the increase in precision 
and the overall F1 descends from this point on. For this particular match, a threshold of
0.88 was identified.

Matching
Upon completion of the entire matching process, we are able to provide the researcher 
with
•	 Summary Statistics collected before the match about the incoming dataset
•	 A csv with:

•	 A plot of the precision/recall/F1 score by threshold indicating why that threshold 
was selected 

•	 The unique Identifier provided by the researcher in their dataset 
•	 A unique Identifier from our dataset that was determined to be the best 

match 
•	 A value indicating how confident our model is that the records are a match 

•	 A label indicating anything unusual about the record pair (e.g. it failed 
validation, was manually labelled, etc.) 
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Endnotes
1. It is also important to note that the “truth” data we deal with here is not an objective 
truth, as often exists in traditional machine learning. The labeled pairs represent 
a human’s opinion on a pair of data points, and it is entirely possible that they are 
mistaken – two individuals with the same name born on the same day is rare, but not 
impossible.

2. Last name and date of birth represent the minimum amount of data with which a 
match can be performed; additional information will improve the quality of the match.

3. “Invalid” dates would be those dates which either do not exist in the calendar (e.g. 
February 30th or 14/06/2001), are far too old (likely placeholders, like 1/1/1900), or 
are in the future.

4. Soundex is a phonetic algorithm that attempts to encode a name such that 
homophones like “Smith” and “Smyth” are given the same code. The code consists 
of the first letter of the name followed by three digits which represent the consonant 
sounds after the first letter. An overview of the encoding rules is available at https://
www.archives.gov/research/census/soundex.html.

5. Since Soundex appends zeros to a code if the name is short, we can often end up 
with compound last names receiving a different Soundex code than either last name 
on its own – e.g. “Smith” would be encoded as “S530”, but “Smith-Jones” would be 
encoded as “S532”, with the last “2” coming from the “J” in “Jones”. By encoding each 
last name segment as well as the overall name, we can ensure that “Smith-Jones” will 
end up in a block with all of the other “Smith-Jones” records as well as “Smith” and 
“Jones” records.

6. A minimum length was chosen to avoid creating very large blocks for names which 
contain name affixes like “de la”, “al” and “von”.

7. We are currently using “Standard Blocking” in our approach, but there are many 
alternative methods – see (Baxter, Christen and Churches 2003) and (Steorts, et al. 
2014) for a description of more advanced methods.
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8. In data which is manually entered into an electronic system, entry errors are more 
likely to occur after the first few letters. This weighting will ensure that “Johnson” 
and “Jonson” – two different names - are not considered as similar as “Johnson” and 
“Johnosn” – the result of a typographical error.

9. Date fields offer an unusual challenge in that, though they could be considered 
Boolean matches, we might allow for specific rules that provide for partial matches 
where common clerical mistakes occur – for example, data entry off of a handwritten 
document mistaking a “4” for a “9”. This is not yet implemented in our model.

10. https://github.com/kosukeimai/fastLink

11. See (Abramitzky, Mill and Perez 2018) for an in depth explanation of the method.

12. Through experimentation, we have determined that at minimum, 200 labelled 
examples are needed to give a reasonable estimate.

13. An alternative metric might be FBeta, which is an F1 score in which the relative 
importance of Precision and Recall is determined by a value Beta – a more 
conservative metric might be to use a beta of 0.5, indicating that we consider Precision 
twice as important as recall.

14. For example, a match with 2% false positives and 2% false negatives has an 
overall lower error rate than if a more restrictive criteria were used, decreasing the 
false positive rate to 1% at the cost of 5% false negatives.
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